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ABSTRACT
We propose an Apache Spark-based scale-up server architecture us-
ing Docker container-based partitioning method to improve perfor-
mance scalability. The performance scalability problem of Apache
Spark-based scale-up servers is due to garbage collection(GC) and
remote memory access overheads when the servers are equipped
with significant number of cores and Non-Uniform Memory Ac-
cess(NUMA). The proposed method minimizes the problems us-
ing Docker container-based architecture effectively partitioning the
original scale-up server into small logical servers. Our evaluation
study based on benchmark programs revealed that the partitioning
method showed performance improvement by ranging from 1.1x
through 1.7x on a 120 core scale-up system. Our proof-of-concept
scale-up server architecture provides the basis towards complete
and practical design of partitioning-based scale-up servers showing
performance scalability.
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1. INTRODUCTION
Scale-out and scale-up configurations are two different represen-

tative methods to implement big data analytics infrastructures. In
scale-out server clusters(e.g, Spark [20], Hadoop [18]), server up-
grades are performed through adding nodes to the existing cluster
system. On the other hand, in scale-up environment, server up-
grades are performed through adding resources(e.g, CPU, mem-
ory) to the existing single node-based system. Scale-up servers are
mostly used in scientific analytics areas [6], and big data analytics
frameworks are being increasingly used. Another reason that the
scale-up servers are becoming more popular is due to significantly
increased resources even on single-node based server system [2].
This naturally requires substantial research on how to improve the
performance scalability of scale-up servers.

Spark is one of widely used big data analytics framework. How-
ever, Spark has been reported that it does not scale on the sin-
gle node scale-up server because of garbage collection(GC) over-
heads [1] [14] [13] and locality of memory accesses on Non-Uniform
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Memory Access(NUMA) architecture [5]. In order to minimize the
remote memory access costs, researchers have attempted to create
a new NUMA balancing [10] [17] and accomplished considerable
level of performance improvement, but not satisfiable in scalability
aspects.

In order to achieve the performance scalability, we need to devise
a framework to avoid the major drawbacks of the Apache Spark re-
garding GC and remote memory access overheads. Our proposed
architecture is based on the reasoning that logically partitioning
the original servers into small servers could hide the Spark’s per-
formance scalability problems. Therefore, we propose a Docker
container-based logical partitioning method for Spark-based scale-
up servers. In this paper, we implemented a proof-of-concept archi-
tecture using Docker container-based scale-up server while leaving
concrete and detailed complete design and implementation of nec-
essary server components to future work.

To evaluate our approach, we manually applied our partition-
ing method to a 120 core scale-up server. While smaller sized
partitioning may further reduce GC overhead and remote memory
access, this may cause straggler tasks problem [14] [16]. Thus,
this paper additionally addresses the trade-off relationship between
the achieved performance scalability and partitioning sizes. Per-
formance evaluation of the proposed best-fit partitioning on a 120
core system reveals that the execution times could be improved by
1.6x, 1.7x, 1.5x and 1.1x for Word Count, Naive Basian, Grep and
K-means, respectively.

Contributions. Our research provides the following contribu-
tions:

• We measured Apache Spark performance scalability on a 120
core scale-up server. The results show that parallel GC only
scales well up to 60 core systems while does not show per-
formance improvement on the systems with more than 60
cores.

• We evaluated proposed partitioning approach on a large scale-
up server using BigDataBench [19] and the results revealed
that the proposed framework significantly mitigate the per-
formance scalability problems of Apache Spark.

• We present a proof-of-concept architecture for Apache Spark-
based scale-up servers based on Docker-based logical parti-
tioning.

The rest of this paper is organized as follows. Section 2 describes
the test-bed, Spark scalability problem and benefits of partitioning.
Section 3 shows the our proof-of-concept architecture. Section 4
describes related works. Finally, section 5 concludes the paper.

2. SCALE-UP SERVER SCALABILITY



 0 

 50 

 100 

 150 

 200 

 250 

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

cores

Word Count PS GC
Word Count G1 GC

(a) Word Count

 0 

 50 

 100 

 150 

 200 

 250 

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

cores

Naive Basian PS GC
Naive Basian G1 GC

(b) Naive Basian

 0 

 200 

 400 

 600 

 800 

 1k

 1k

 1k

 2k

 2k

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

cores

Grep PS GC
Grep G1 GC

(c) Grep

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

cores

k-means PS GC
k-means G1 GC

(d) K-means
Figure 1: Performance scalability.

 0%

20%

40%

60%

80%

100%

8core 15core 30core 60core 120core

C
P

U
 u

ti
liz

a
ti
o
n

idle system user

(a) Word Count

 0%

20%

40%

60%

80%

100%

8core 15core 30core 60core 120core

C
P

U
 u

ti
liz

a
ti
o
n

idle system user

(b) Naive Basian

 0%

20%

40%

60%

80%

100%

8core 15core 30core 60core 120core

C
P

U
 u

ti
liz

a
ti
o
n

idle system user

(c) Grep

 0%

20%

40%

60%

80%

100%

8core 15core 30core 60core 120core

C
P

U
 u

ti
liz

a
ti
o
n

idle system user

(d) K-means
Figure 2: CPU utilization.

2.1 Test-bed and Benchmark
Apache Spark. Apache Spark is a framework for large scale
distributed computation. Resilient Distributed Datasets(RDD) is
a collection of partitions of records, and the RDD is managed as
Least Recently Used(LRU), so when there is not enough memory,
Spark evicts the least recently used a partition from RDD.
Test-bed. We used a machine to evaluate on real hardware:
an 120-core (8 sockets × 15 cores) Intel Xeon E7-8870. Hyper-
Threading was disabled.
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Figure 3: Test-bed Intel Xeon architecture.

Benchmark. We used the BigDataBench.

Workload Input data size Heap size Configuration Data type

Word Count 10G 4G none text
Naive Basian 10G 4G none text
Grep 30G 4G "the" text
K-means 4G 4G k=8 graph

JVM Spark Hadoop OS Distribution

Openjdk 1.8.0_91 1.3.1 1.2.1 Linux 4.5-rc6 Ubuntu 14.04

Table 1: System information and configuration values.

Table 1 shows our configurations. we used four workloads(Word
Count, Naive Basian, Grep and K-means). For the simplicity of

experiment, we used input data size as the table 1. Of course, large
Spark heap size can eliminate the GC overhead, but commonly the
input data size is larger than the heap size in big data analytics area;
we used the smaller heap size than the input data size.

2.2 Spark Scalability Problem
Figure 1 shows the Spark scalability of four workloads with two

state of the art garbage collections, G1 and Parallel Scavenge(PS).
Up to 60 core, the four workloads scale lineally and then GC pause
becomes bottlenecks. The Word Count workload flattens out after
60 core, and other benchmarks slightly go down because not only
the GC overhead but also the remote memory access. To evaluate
state of the art GC, we compared the G1 with PS GC. The effect
of changing to the GC is the PS outperforms G1 up to 2.0x on
120 core. Although we used the state of the art scalable GC, the
Spark performance scalability still suffers from GC. Furthermore,
we could not see any significant differences when increasing the
size of Spark executors.

Our goal is to maximize CPU utilization, so we profiled the CPU
utilization on the four workloads. Figure 2 shows the CPU utiliza-
tions. Th y-axis is the percentage of time spent in kernel-space
code(sys), user-space code(user), and idle time(idle). All bench-
marks increase the idle time due to the GC pause.

2.3 Benefit of JVM Partitioning
Spark and Hadoop frameworks use JAVA, and they need java

virtual machine(JVM), so understanding the JVM partitioning is
important. To preliminary evaluate the JVM partitioning effect,
we conducted experiments by using SPECjbb2013 [15], which is a
state of the art benchmark for JVM performance. We used two dif-
ferent experimental settings. First, we used per-socket JVM parti-
tioning by using the NUMA control application(numactl). Second,
we set maximum JVM heap size, an available system memory size,
and all threads are scheduled by the OS to migrate any core, and
we enable automatic NUMA balancing feature in the Linux kernel.

The results shows that partitioning approach outperforms non-
partitioning approach by 1.4x on 120 core(figure 6). Therefore,
in manycore scale-up server, partitioning approach has many ad-
vantages over non-partitioning approach in terms of performance
scalability.
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Figure 4: Performance scalability using docker container.
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(d) K-means
Figure 5: CPU utilization on 120 core.

  0

  20,000

  40,000

  60,000

  80,000

  100,000

  120,000

  140,000

120 90 60 30

jO
P

S

non−partitioning

partitioning

Figure 6: Effect on JVM partitioning.

2.4 Benefit of Container-based Partitioning
In this section we discuss the docker container-based partitioning

on the scale-up server described as section 2. We used ram file
system for HDFS due to eliminating the HDFS bottleneck.

method executor heap size number of partitions

non-partition 4G 1
coarse-grained(30 core) 1G 4
fine-grained(15 core) 512M 8

Table 2: Partitioning values.

We used three different experiment settings. First, we used the
non-partitioning method as section 2(heap size is 4G). Second, we
used a fine-grained partitioning(15 core) because it can maximize
the NUMA locality. Table 2 shows our partitioning values. The
heap size of executor in the partitioned Docker is divided by num-
ber of partitions. Finally, we used the coarse-grained partition-
ing(30 core) since it can mitigate a straggler tasks problem [14] [16].

The results for Word Count are shown in Figure 4(a). Up to 60
core, the PS GC version of non-partitioning approach scales lin-
early and then it flattens out. However, up to 60 core, our fine-
grained partitioning outperforms non-partitioning since it can re-
move GC and NUMA latency overheads, and then a straggler tasks
problem become bottlenecks. Our coarse-grained partitioning out-
performs non-partitioning by 1.5x and fine-grained partitioning by

1.1x on 120 core. Furthermore, the non-partitioning approach has
the highest idle time(64%) since GC becomes bottleneck(see fig-
ure 5). The results(Figure 4(b)) for Naive Bayesian is similar to
Word Count workload. Our coarse-grained partitioning outper-
forms non-partitioning by 1.5x and fine-grained by 1.2x on 120
core.

The results for Grep are shown in Figure 4(c). After to 60 core,
the coarse-grained partitioning approach scales linearly, but the
others throughput go down after to 60 core because non-partitioning
version suffers from GC. The fine-grained partitioning approach
suffers from the straggler tasks problem. Although the fine-grained
partitioning approach eliminates the GC overhead and the remote
memory access, its CPU utilization(23%) is low than coarse-grained
partitioning(38%). Our coarse-grained partitioning outperforms non-
partitioning by 1.5x and fine-grained by 1.3x on 120 core.

The results for K-means are shown in Figure 4(d), The K-means
workload suffers from GC [1]; therefore, fine-grained partition-
ing approach has substantial performance scalability up to 60 core.
However, then it collapses since it extremely suffers from the strag-
gler tasks problem that extends job completion times. Our coarse-
grained partitioning outperforms non-partitioning by 1.1x on 120
core. Fine-grained partitioning approach has the lowest(72%) idle
time because the coarse-grained partitioning approach relatively
less suffers from the straggler tasks problem.

3. PROOF-OF-CONCEPT ARCHITECTURE
As noted earlier, the major problems of Spark scalability are GC

overhead and remote memory access, and it can be removed by
the Docker container-based partitioning approach, which divides
the original scale-up server into small logical servers that treats the
partitioned cores as a cluster node and moves shared-memory sys-
tem workers to distributed system workers that communicate via
message-passing.

This section explains design consideration for architecture and
our proposed proof-of-concept architecture to solve GC and mem-
ory latency.

3.1 Design Consideration
In order to reduce the GC pause time, minimizing CPU counts

is a simple method, while it is a double-edged sword because small



CPU
CPU

CPU

CPU

CPU

CPU

CPU
CPU
CPU
CPU

CPU
CPU
CPU

CPU
CPU
CPU

CPU
CPU
CPU

SPARK
Driver

Decision Engine

Docker Container

DRAM

DRAM

DRAM

DRAM

CPU

CPU

CPU

CPU

CPU

CPU

Workload Available
Cores

Input
Data
Size

Auto-tuner
(Partitioning)

Hint

CPU
CPU
CPU
CPU
CPU

CPU
CPU
CPU
CPU
CPU

CPU
CPU
CPU
CPU
CPU

CPU
CPU
CPU
CPU
CPU

Straggler
monitor
& Core
injector

Worker Worker

Worker

Worker

Worker

Worker

Worker

Inject
core

Inject
core

Result

Figure 7: The proof-of-concept architecture

size of CPU counts may lead communicating bottlenecks. There-
fore, the first design consideration is what is best-fit CPU counts
for reducing the GC pause time.

The second design consideration is the straggler tasks(i.e, tasks
take significantly longer than expected to complete) problem. Even
though small size of partitioning may reduce GC, its benefit does
not come for free because it may cause straggler tasks problem.
Thus, in order to scale Spark, a straggler monitor and a run-time
core injector are needed.

In addition to finding the best-fit CPU counts and reducing the
straggler tasks problem, the NUMA locality is next design consid-
eration. Due to the fact that threads are scheduled by the OS to
execute on any core, and partitioning approach can prevent to mi-
grate other socket, so it is necessary to divide by per-socket.

Operating systems noise can pose scalability bottlenecks because
modern operating systems have been designed for shared-memory
systems; therefore, the final design consideration is to avoid operat-
ing systems noise. For example, single address space sharing prob-
lem [7] [9] between multi-threaded applications, scheduler bottle-
necks [12] and cache communication bottlenecks [4] [11] are ma-
jor problems in manycore scale-up server operating systems. These
problems are caused by sharing resource, so the architecture should
consider the operating systems noise.

3.2 Architecture
This section describes our vision that will accommodate the pre-

vious mentioned design consideration. Our proposed scalable par-
titioning architecture is figure 7 with the necessary features. The
left side of figure shows our proposed architecture, and the right
side of figure shows isolated Docker containers and per-socket CPU
with memory.

Decision engine is one of the most important features since all
partitioning policy come from the decision engine component. The
basic function of the decision engine chooses whether or not the job
run on the Docker container. The necessity of the auto-tuner is that
performance scalability depending on partitioning size commonly
differs from each server architecture. To maximized CPU utiliza-
tion, the straggler monitor and core injector are needed because
straggler tasks prolong job completion times, so the early finished
CPUs should inject to other Docker containers, which contains the
straggler tasks.

4. RELATED WORK
Apache Spark Scalability. To improve the Spark scalability, re-

searchers have attempted to optimize for scale-out server [14] [13]
or to optimize scale-up server [1] [6]. Our research belongs to op-
timizing for scale-up server to eliminate GC overheads and to en-
hance the locality on NUMA architecture. However, previous stud-
ies did not considered Docker container-based partitioning, which
can clearly reduce memory contention, and it can maximize local-
ity of memory access. Furthermore, it can easily combine other
container management solutions.
Scale-up Server Scalability. To improve the Spark scalability, re-
searchers have attempted to apply distributed system concepts to
shared memory systems [3] [4]. Barrelfish [3] creates a new op-
erating system for efficient cache-coherent shared memory system
by building an OS using message-based architecture. Our research
also brings about distributed system concepts, but our approach ap-
plies to user level Spark framework instead of OS because OS can
achieves performance scalability by commuting interface [8].

5. CONCLUSION AND FUTURE WORKS
We proposed a Docker container-based partitioning method for

Apache Spark scalability on scale-up server. To eliminate GC and
remote memory access, we divided per-socket and best-fit parti-
tioning. Evaluation results(Word Count, Naive Basian, Grep and
K-means) reveal that Docker-container method has substantial per-
formance up to 1.7 times compared to existing solutions.

Future Directions. Our future directions are:

• Implementing the proof-of-concept architecture. This pa-
per shows manually partitioning method, so we will imple-
ment the Docker-container-based partitioning method.

• Solving the straggler tasks problem. straggler tasks signif-
icantly extend job completion times. To mitigate this prob-
lem, we may use dynamic resource allocation solution in
Docker to maximized CPU utilization.
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